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Abstract. Phenomenological predictions for sound attenuation and velocity anomalies near 
critical points are presented. General symmetry properties of the linear elastic constants and 
the general properties of the low- and high-frequency behaviours of linear-response functions 
are used to develop phenomenological equations, where exponents, relaxation times and 
amplitudes are introduced as parameters to fit to the experimental data. Novel interpretation 
formulae. which combine the asymptotic high- and low-frequency limits of complex dynamic 
elastic constants. are constructed. It is shown that causality requirements give new relations 
between the amplitudes of ultrasonic attenuation and the velocity in the asymptotic limits 
of high and low frequency. 

1. Introduction 

Experimental methods used in investigations of phase transitions can be divided into two 
groups: (i)  methods probing local properties and (ii) methods probing the macroscopic 
response. Examples from the first group are electron and nuclear magnetic resonance. 
Macroscopic properties are studied by dielectric constant and heat capacity 
measurements. and also by scattering experiments, where the external force is generated 
by. for example, a beam of light, x-rays. neutrons or acoustic phonons. 

The latter case involves measurements of sound attenuation and velocity, since an 
applied sound wave may be considered as spatially homogeneous. i.e. E-’  9 q = 0 in the 
experimentally accessible region. Here, f is the correlation length and q is the wave- 
vector (), - 50 ,um is a typical ultrasound wavelength). 

Nice illustrations of the statements made above with respect to local and macroscopic 
probes may be found in the papers by Halperin and Hohenberg (1967) and Leung et a1 
(1979). 

Ultrasound experiments near phase transitions in a number of systems (magnetic. 
liquid-gas, structural) have recently revealed dynamic scaling within the asymptotic 
region. This means that the dynamic elastic response function is found to behave accord- 
ing to the dynamic scaling hypothesis, with a macroscopic relaxation time obeying 
r - Ff(qf), where z belongs to one of the dynamic universality classes. Some of the 
many examples to be found in the literature are given in a recent review by Fossheim 
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and Fossum (1984). It is interesting to note that most examples of dynamical scaling of 
sound have been observed only during the past 3 4  years. These observations have lent 
increasing importance to the whole problem of the critical dynamics of sound. 

The purpose of the present paper is to present a phenomenological description of 
these problems. The treatment will apply general symmetry arguments and simple 
analysis of linear response theory to construct theoretical models for sound near critical 
points. Thus, the treatment contains no theoretical technicalities. The general state- 
ments and results will be illustrated throughout the article on a system of cubic symmetry. 

In § 2 of the present paper the connection is established between the complex 
elastic modulus and the sound velocity and attenuation. Section 3 contains symmetry 
considerations, concepts such as symmetrised and effective components of elastic con- 
stants are introduced. Various types of coupling between the order parameters and 
mechanical variables are considered in § 4. In § 5 simple equilibrium statistical mechanics 
is applied to derive scaling laws expressing the critical exponents of static elastic constants 
in terms of exponents of other thermodynamic quantities. It will be shown that only the 
symmetrised elastic constants can be expected to obey simple power law behaviour close 
to critical points, since the symmetrised components represent fundamental ways of 
distorting a given symmetry. 

In 0 6 the natural extension to include dynamics is presented. Linear response theory 
is applied to derive causal dynamic scaling functions. An exact result is found in the 
gaussian approximation, whereas a straightforward generalisation is made to other 
cases. 

Results and expressions for sound velocity and attenuation are summarised and 
discussed in § 7, while an illustrative example is given in § 8. 

Together with the present article we also publish an experimental paper on ultra- 
sound experiments above the phase transition in SrTiO, (Fossum and Fossheim 1984, 
1985, Fossum et a1 1984) where the theory discussed below will be applied in the data 
analysis. 

2. Ultrasound anomalies and mechanical response 

The quantities most frequently measured in an ultrasonic experiment are (i) the sound 
velocity, U ,  and (ii) the sound attenuation, cu. A measurement of U and cudetermines the 
full complex linear elastic modulus: 

C = ReC + iImC. (1) 

C may be defined through Hooke’s law 

o= CE 

where is the mechanical stress and E is the strain. For simplicity the tensor indices are 
dropped in equation (1). Anisotropy will be discussed in the following chapters. In 
general, the thermodynamic quantity C contains information about all kinds of micro- 
scopic processes in the system which is studied. Near a phase transition C, as with any 
other susceptibility, will be split into two parts: 

C = C o + A C  (3) 

where AC is the critical part and CO is the background part. CO contains no information 
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about the phase transition and is thus assumed to be a smooth function of the fields 
relevant to the critical behaviour (temperature, pressure, magnetic field etc). 

Assuming Im C G Re C and Re AC G ReCO, it is straightforward to derive the fol- 
lowing expressions for the anomalous parts Au and ha of the velocity and attenuation 
respectively: 

Au/uO = (1 /2pu;)  ReAC (4) 
uoAa/w = (1 /2pu i )  ImAC 

where U ;  = ReCo/p is the background velocity squared, and p is the density of the 
medium. 

3. Linear elasticity: symmetry considerations 

When crystal anisotropy is taken into account, Hooke's law, equation (2) is replaced by 

U,] = C l I k i E k i  ( 5 )  

€11 = Silkl'kl (6) 
or 

where summation over repeated indices is understood. all = uli is the elastic stress tensor 
and = is the linear elastic strain tensor. 

The fourth-rank tensors Cllkl and Silk, are the linear elastic constant and the linear 
compliance respectively. 

Introductions to linear elasticity, including discussions of the validity of Hooke's law 
are, for example, given by Landau and Lifshitz (1959), Nye (1960) and Pollard (1977). 
Details will not be cited here. 

Note, however, that the elastic constants measured in ultrasound experiments are 
the adiabatic ones. The reason is that the ultrasound frequency, w, is too high for the 
temperature variations accompanying the sound wave to be transported across a distance 
of one acoustic wavelength during times of the order of one period ( 2 n / w ) .  One can 
then regard any part of the body as thermally insulated at all times, i.e. the wave motion 
is adiabatic. One case where a distinction between isothermal and adiabatic responses 
is important, is close to elastic phase transitions, i.e. structural transitions where the soft 
mode is an acoustic phonon (Rehwald 1973). 

Afourth-rank tensor, such as Cor S ,  generally contains 81 independent components. 
This number is reduced drastically by symmetry. In the cubic case there are three 
independent components of the elasticity tensory, namely CI1, CI2 and C44, where the 
short-hand Voigt matrix notation has been applied (see, for instance, Pollard (1977)). In 
isotropic systems there are only two independent components, since C44 = 2(Cll - Cl*), 
while in lower symmetries there are more than three independent components (Nye 
1960). 

The Helmholtz elastic free energy may be written to lowest order in the strain: 

F = &Cilk[ E11 Ekl  = a C m ,  E ,  E ,  = I C  r r  E' (7) 

where summation over repeated indices is understood, and the Cs are isothermal elastic 
constants. 

The last equality in equation (7) may be obtained after diagonalising the elastic 
modulus matrix [C,,], or more easily by applying the group theory for the construction 
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of invariants. An important and useful group theoretical result in this context is the 
generalised Unsold theorem, which states that (Tinkham (1964) p 81): 

k = l  

is invariant under all operations of the point group for which q t )  are the basis functions 
of an irreducible representation r of dimension I,. 

The elastic strain which is a second-rank tensor, transforms as the functions quadratic 
in the Cartesian coordinates. These functions are usually listed in the character tables of 
the point groups, and a free-energy expansion on the diagonalised form F = & C , E ~  may 
thus easily be constructed. The strain components E, (=some linear combination of 
various E,,),  and elastic modulus components C, (=some linear combination of the 
various Cqkl) obtained in this way are referred to as symmetrised components, since the 
various terms, r ,  correspond to the fundamental ways of distorting a given symmetry by 
external homogeneous strain. The E, transforming under the identity representation are 
non-symmetry-breaking. If all the C,components are positive the crystal is stable against 
deformations. If, however, one of them, C,, say, decreases to zero, which may happen 
close to elastic phase transitions, the crystal may distort into a new structure determined 
by the strain E, ,  (Cowley 1976). This property of the symmetrised energy expansion, 
then, determines the elastic stability of the crystal lattice. 

As an example, we again consider the case of cubic symmetry. Using equation (7) 
the free energy in cubic symmetry may be written: 

F=&Cmn&,&,, = &C11(~: + E ;  + E : )  + C12(~1~2 + ~ 1 ~ 3  + ~ 2 ~ 3 )  

+&C44(E: + E: + E ; ) .  (8) 
Applying the Unsold theorem to the second-order functions listed in the character table 
of the cubic point group, Oh, (see, for example, Wooster (1973) p 326), one obtains: 

where the connection between the quantities in equations (8) and (9) is given in table 1. 
Generally in a crystal there is a possibility of three waves with different velocities for 

given directions of propagation. Only in certain directions of a crystal will these be one 
pure longitudinal and two pure transverse waves. One may define an effective elastic 

Table 1. Symmetrised elastic constants and symmetrised strains in cubic symmetry. The 
strains are termed according to in which way the cubic structure is distorted in each case. 

Symmetrised Symmetrised Transforms 
elastic modulus homogeneous strain Term under 

c, = +(c,l + 2CI2) E, = € 1  + € 2  + € 3  Hydrostatic strain *I, 

Orthorhombic strain E, 
Tetragonal strain 

c, = +(Cl1 - CI2) E,, = E 1  - E 2  

F , ~  = 3-”*(3~, - E,)  

Trigonal strains T2e 



Ultrasound near phase transitions 5535 

constant for each of these waves: 

U *  = CedP (10) 
where Ceff is some linear combination of some, or possibly all, of the independent 
components Cqk,. 

Equivalently Ceff may be expressed in terms of the symmetrised elastic constants C, 
as 

where 2; includes coefficients and also denotes that some of the C, may be missing. 
Equation (11) means that when a sound wave with a given direction of propagation and 
a given polarisation is applied the effective mode can generally be decomposed into some 
of the symmetrised modes. 

In a cubic crystal, waves propagating along one of the major directions [loo], [110] 
or [ l l l ]  will be pure longitudinal or pure transverse. Some examples are given in 
table 2. 

Table 2. Examples of effective elastic constants for some pure modes in cubic symmetry. 
The effective components are expressed in terms of the symmetrised components given in 
table 1. 

Direction of Direction 
propagation cosines Polarisation Cefi = pu’ 
4 n l .  n2. n3 U = [ U I U Z U 3 ]  = z;,c,, = 2;  c, 

~ ~~~~ ~ 

[loo1 1,o.  0 Longitudinal c11 = c, + %C, 

[loo1 1 ,0 ,0  Transverse c, = c, 
[I101 l/V% 1 j\5,0 Longitudinal HC,I + CE + 2 C d  

[1111 l l a ,  1/\6,  I / a  Longitudinal +(Cl, + 2Cl2 + 4Cw) 

( U 1  # 0 ,  U ?  = U 3  = 0 )  

( u l  = 0 ,  U ?  or u 7  # 0) 

(U1 = U2 f 0 ,  uj = 0)  

( U 1  = U2 = U 3  # 0 )  

= c, + jc, + c, 

= c, + 4c, 

4. Coupling between the order parameter and the mechanical variables 

We want to specify the coupling between the strains, E , ,  and the ordering quantity Q ,  
i.e. give the coupling term H ,  in the Hamiltonian. Depending on symmetry three 
main types of coupling may dominate (summation over repeated indices, and a space 
integration Jddx is understood): 

(i) Linear: H,  - utplQ, 
(ii) Quadratic: H,  - blIl~,Q,Q, 
(iii) Quadratic: H ,  - ~ , , , E , E , & ~ .  

Of these (i) and (iii) can only exist for certain symmetries, while (ii), which is the strictive 
type, will exist in all matter. It may therefore be said to be the most important one. 

Case (iii) will not be discussed here, since it is rarely observed (see, for instance, 
Hochli and Scott (1971)). 
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A coefficient in the expansion of H ,  can exist only if the corresponding symmetric 
powers of Q, and E, belong to the same irreducible representation. This is an extended 
version of the Unsold theorem for construction of invariants, cited in § 3, i.e. one may 
replace the squares of the base functions, with products of different base functions 
belonging to the same irreducible representation (Rehwald 1973, Tinkham 1964). 

As a simple example we derive the coupling Hamiltonian valid for cubic perovskites 
(see, for instance, Aharony (1978)). 

In the perovskites the order parameter is an axial vector transforming according to 
the irreducible representation TI, of the cubic point group Oh. None of the symmetrised 
strain components (table 1) transform according to T1,, i.e. no linear coupling term 
exists in this case. The squares of the order parameter components transform as an 
ordinary vector squared, i.e. in the same way as the symmetrised strains. Applying the 
extended Unsold theorem one obtains 

which may be transformed into a similar form as that of Aharony (1978) with b, = Bo, 
be = $Bl, b, = B2. A more detailed treatment of H ,  in cubic symmetry is given by Henkel 
et a1 (1980). A listing of the symmetry properties of the order parameter in a large 
number of structural systems is given by Rehwald (1973) and Luthi and Rehwald (1981). 

5. Static electric constants near critical points 

The static thermodynamic properties may in principle be determined from the singular 
part of the free energy: 

F = - ( k T / V )  In Z 

z = C, exp(-PH). (14) 

(13) 
where Vis the volume and the partition function is 

{QI 
Here P = l /kT, and H i s  the order parameter dependent part of the Hamiltonian. For 
example, the following Landau-Ginzburg-Wilson (LGW) Hamiltonian H is believed 
to be relevant to the critical behaviour in cubic perovskites (Aharony 1978): 

Here the first three terms are the isotropic ones, while the terms with coefficients u o  and 
f represent cubic anisotropy and anisotropic dispersion respectively. H,  takes coupling 
to strain degrees of freedom into account, and is given in equation (12). In equation (15) 
only r = ro( T - To)  is assumed to depend strongly on temperature. The sum in equation 
(14) runs over all possible order parameter configurations. The singular part of the 
isothermal elastic constant is defined through equation (7): 

AC,, = a2F/aE,aE, (16) 
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where the Voigt notation is used. It is straightforward to combine the three equations 
(13), (14) and (16) into 

where 

A term of the order of (d*H/d~,de,,) is omitted, since we do not consider the E*Q- 
coupling here. 

If the symmetric form of the strain-order parameter coupling Hamiltonian H, is 
known, the different components of the static elastic tensor may now be given in terms 
of order parameter correlation functions: 

(i) Linear H, - am[ E, Q, 

ACmn - amian!((QiQ!) - (Qi)(Q!)) 
(ii) Quadratic H ,  - b,, E, Q, Q, 

ACmn - bm,bn,,((QlQ,Q,Q/) - (Q,Q,><Q,Q/)). 
From this one expects ACgtiC - t-’in the linear coupling case, where t = ( T  - T,)/T,  is 
the reduced temperature. 

As a more explicit example we consider the cubic perovskites. H ,  is given in equation 
(12) and the symmetrised elastic constants in table 2. Equation (17) yields the following 
four-point correlation functions in agreement with Murata (1976) : 

AC, = - % j d d r j d d r r ( ( Q i ( r )  kTV - Qi(r))(Q?(r’)  - Qi(r‘)))  

where (Q:(r) - Q:(r)) = 0 is used. 
Note that in the isotropic approximation one must expect the same critical behaviour 

for C, and C, since ( (Q:  - Q:) (Q: - Q:)) = ((QIQ,)(QIQ,)) as is seen by performing 
a rotation in the order parameter space (Murata 1976). Note also that the heat capacity 
is simply related to ACa 

d 2 F  aHdH aH dH 
- -2 - i d  - i,> iM - ACa 

since the important temperature dependence of H is given by H - riQI*. Therefore one 
expects AC, - t -a ,  which is generally valid for non-symmetry-breaking strains such as 
E, .  The connections between elastic constants and the heat capacity are known as Pippard 
relations (see Hamano and Hirotsu 1979). These qualitative statements are in agreement 
with the results of Murata (1976), who calculated the exponents for C,, C, and C,. We 
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will not follow his development here. Instead we will derive exponents for the static 
elastic constants, starting from the scaling hypothesis (Fisher 1974): 

F = t 2 - @ Y F ( h / t A ,  & , / t e r n ) .  (21) 

Here h is the field conjugate to the order parameter. A = /3 + y ,  and the mechanical 
strain component E, is included as a relevant parameter with corresponding cross- 
over exponent Q,,. Note again that since we want to calculate elastic constants 
-d2F/a$,, we have chosen the strain E, as the relevant field in equation (21). Usually 
one chooses the mechanical stress, which is the externally variable field in this case. 
Note also that the components of the elastic modulus we calculate in this way will be 
symmetrised ones, defined through equation (7), since they correspond to the fun- 
damental ways of distorting the structure. Thus there will generally be one crossover 
exponent q,, associated with each symmetrised strain E,. In the following the subscript 
m on Q, will be dropped for simplicity. 

Non-svmmetry-breaking strains, for example, the hydrostatic strain E,  in the cubic 
case, or a strain along the c axis in a tetragonal crystal, will not be relevant to the 
critical behaviour. This means that they will generally not transform the system into 
a new universality class. However. T, may be changed by such strains. since the riel2 
term in the Hamiltonian will be renormalised, as may be seen from equation (15) for 
non-zero E,. Denoting the non-symmetry-breaking strain E, one can write: 

(22) F =  ( t  + a ’& , ) * -a  = t 2 - @ f ( E a / t ) .  

Here a’ is some constant and f ( x )  = ( I  + a ‘ ~ ) ~ - ~ .  Thus 

AC - d 2 F / a & i  - t - @  (23) 
for small perturbations E,. 

Symmetry-breaking strains will generally change the universality class. Mechanical 
strains that couple linearly to the order parameter are equivalent to the field h in the 
free-energy expression, equation (21). Hence, in the case of linear coupling ( H ,  - E Q )  
one may write 

F = f2-@YF(E,/f*) (24) 

(25 )  

and 
AC - a2F/a&.2, - t 2 - o - 2 ~ 3  - f - Y  

where the scaling law (Y + 2/3 + y = 2 was used, 
When the mechanical variables couple quadratically to the order parameter, 

H,  - &e2, one has to consider the cases T < T, and T > T, separately. For T < T, 
the mean value of the order parameter (2, = ( Q ) # O ,  which means that 
H,  - ~ E Q ~ S Q  + ESQSQ, where we drop the tensor indices for simplicity. There is 
now one ‘field’ that in effect couples linearly to the order parameter fluctuations, 
in addition to E which alone couples quadratically. Thus for T < T, one may write 

F = t Z - a Y F ( ~ , Q O / t A ,  &,/re) (26) 
which gives three contributions to the elastic constant 

AC - a2F/aEk - t2B-r + t - ~  + t2B-e 

where the relation Q, = ( Q )  - fb and the scaling law (Y + 2p + y = 2 have been used. 
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The exponent ,U is given by ,U = (Y + 2 ( q  - 1). Amplitudes have been omitted in this 
discussion. Above T, linear coupling &,go is absent. Thus in this case 

(28) AC - t-‘ 
q is in the cubic perovskite case believed to be equal to the crossover exponent away 
from an isotropic Heisenberg, or possibly cubic, behaviour to X Y  or Ising behaviour. 

As discussed above, the elastic constants may be expressed in terms of correlation 
functions. In the quadratic coupling case, these contained four order parameter 
components: AC - (QQQQ), where subscripts have been dropped for simplicity. 
Writing Q = Qo + SQ one may ider,tify the three terms appearing in equation (37) as 

QoQo(SQSQ) - t z P - ”  

(SQSQSQSQ) - t-“ 

Qo(SQSQSQ) - t ’P-q. 

Of these the term resulting from the three-point correlation function is usually 
neglected in the literature. The existence and importance of this term was stressed by 
Ferrell and Bhattacharjee (1981). Note that in mean-field theory. where fluctuations 
are neglected, all the exponents of the quadratic coupling case will be equal to zero. 
One will only observe a step at T, (Rehwald 1973). The divergence discussed above 
is due to fluctuations. Note also that although we have derived exponents for elastic 
constants, the same critical exponents will govern the symmetrised elastic compliances 
since we have considered the diagonalised version of the elastic free energy. 

Apparently the present analysis gives a divergence of elastic constants close to 
critical points. This is, of course not physically correct since elastic constants become 
smaller near T, and in some cases, such as elastic phase transitions. go to zero. The 
quantities that diverge are the elastic compliances. However, as long as the anomalous 
part, AC = C - CO, is much smaller than the background part, CO, it is correct to express 
AC and AS in terms of the same exponent. Here the total compliance S = So + AS is the 
sum of a background part So and an anomalous part AS. Inserting into C = 1/S one 
obtains AC = - Ci AS when AC Co. Since the elastic matrix is diagonal in the sym- 
metrised version, the relation C = 1/S is valid when C and S refer to corresponding 
symmetrised elastic constants and compliances. 

Formally, it would therefore be slightly better to calculate the critical behaviour 
of the elastic compliances. The present calculation is a more direct approach, in which 
thermodynamics in a strict sense is sacrificed. In an ultrasound experiment. the giuen 
quantity, the external field, is the stress. and not the strain which was chosen for 
convenience in the present case. The correct potential to consider is then not the 
Helmholtz free energy F as indicated for instance in equation (13), but rather the 
Gibbs free energy G. It is meaningless to take the derivatives of G with respect to the 
strains. One must instead write the coupling Hamiltonian H ,  in equation (12) in terms 
of stress components, and the ’new’ corresponding coupling constants. The second 
derivative of G with respect to the symmetrised stresses yields symmetrised com- 
pliances which may then be inverted as described above to obtain the symmetrised 
elastic constants. 

These formal considerations, which also apply to the treatment given in the 
following section where dynamics is discussed, do not invalidate the results as far as 
exponents of elastic constants are concerned. The results are summarised in table 3. 
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Table 3. Leading singular terms for staric symmetrised elastic constants or compliances. 
Scaling law: p = (Y + 2(9, - 1). In static mean-field theory where fluctuations are neglected. 
only the linear case H, - EQ will have an exponent different from zero (see also Rehwald 
(1973) and Aharony and Bruce (1974)). 

Coupling T <  T,  T >  T ,  

Non-symmetry breaking a;  t - *  a y t - ”  
Linear EQ a; r - “  a ; t - ,  

Quadratic EQ’ a;r-u + g ; t 2 B - v  + a ; t 2 B - ~  aTr-1 

6. Dynamic elastic response near critical points 

In this section we turn to the dynamics of the elastic constants near critical points. 
Parts of this discussion follow closely that given by Fossheim and Fossum (1984). 

The response function, or susceptibility, which may be directly studied by ultrasonic 
methods is the complex elastic stiffness tensor defined through the (classical) fluctuation- 
dissipation theorem (Kubo 1966), as the following integral over the correlation of 
fluctuating internal stress 6aj(0, 0) and its time derivative Sui(r, t ) :  

dtexp(-iq-r)exp(+iwt)(6ui(r, t)6u,(O,0)). 

Here the spatial integration is over the volume of the system, q and Q are, respectively, 
the wave-vector and the frequency of the acoustic wave, k is Boltzmann’s constant, 
and T is temperature. The fluctuation-dissipation theorem, equation (29) , is derived 
assuming an external harmonic perturbation of the equilibrium system. In the present 
case this perturbation is the applied sound wave. The theorem states that the linear 
response of a given system is expressed in terms of the fluctuation properties in the 
system, in thermal equilibrium. The best way to proceed is by Fourier transformation of 
the spatial dependence of dui. In addition, we choose to extract the statics by performing 
a partial integration over the time variable. After these changes equation (29) becomes: 

V ”  
- iw ~ j ,  dtexp(ioc)(Sa,(q, t)6aj(-q, 0)). 

Here the first term is purely static, and hence, as we shall see, contains all the terms 
discussed in the previous section on statics. 

To proceed one must make some assumptions about the decay behaviour of the 
order parameter fluctuations SQ1. The simplest case will, of course, be to assume 
purely relaxational behaviour 6Q1(q, t )  = 6Ql(q, 0) exp(-t/t,), corresponding to an 
overdamped phonon description in structural systems when tq is real (giving essentially 
mean-field-like results). To generalise the treatment, however, one may allow zq to be 
a time-dependent quantity. Further generalisation requires the use of scaling forms for 
the dynamical susceptibility. 
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Such a modification can be done approximately at the end of the calculation, since the 
results will be expressed in terms of the total relaxation time tq. Even more sophisticated 
models, including the central mode in structural systems, may be approximated in the 
same way. We return briefly to this question below. 

In the simplest case the relaxation time is expressed as tq = Ff(q5)  (Ferrell er al1967, 
Halperin ar7d Hohenberg 1967, 1977) where E is the correlation length and z is the 
dynamical exponent which is near two for a non-conserved order parameter and near 
four for a conserved one. We discuss only the quadratic coupling case ( EQ* coupling), 
since the results are easily generalised to other cases. 

The fluctuation of internal stress is 

6o l ( r ,  t )  = b,,i( Q,(r, t)Qi(r, t )  - <Q,<r, t)Q/(r, t ) ) )  

or 

Writing Q, = Qoj + SQj, where Q ,  is the average of Qj, we obtain two terms in 60,: 

Inserting this in equation (30) we obtain three types of non-vanishing correlation func- 
tions, a two-point correlation which gives the so called Landau-Khalatnikov term 
(Landau and Khalatnikov 1951, hereafter LK), a four-point correlation which we may 
call the critical scattering term, and a three-point correlation which represents a mixing. 
The latter will not be discussed further, but the phenomenological extension of mean- 
field results to be given below, is valid for this term as well. See also table 3 .  

6.1. The  L K  term 

The LK term is given by: 

Using the simple relaxation form for dQ, mentioned before would now lead to the well 
known mean-field results for the LK contributions: 

Xnr(q, W >  = Xnr(q)/(1 - 'ut). 

To obtain more general forms we have to use scaling arguments. We write the order 
parameter susceptibility as 

X n r ( 4 ,  x = X(q> O)f(iut) 
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wheref(iwt) is some scaling function. By the expansion off( iot)  we see that 

1 f o r w t e 1 .  
ImX-t-Ywt 

Analogous to the static case where the susceptibility only diverges for q = 0, we must 
require that x does not diverge at T, when w # 0, i.e. x - to for w t  % 1 (Landau and 
Lifshitz 1981). This leads to 

for w t  % 1. I R e x  - t-Y(wt)-Y’” 

Im x - t-Ywt(wt)- l+Y’uz 

AcLK(o, U )  = - A L K t ? B - Y ( I  - iwT)-Y/vz 

Both limits may be combined in a scaling form, for instance as follows 

(33) 
where this particular form is chosen to fulfil causality requirements. This function has 
no poles in the upper half-plane. The only instability occurs for U--., 0, E - +  x .  For a 
detailed discussion of linear response near phase transitions, we refer to Thomas (1976). 
In mean-field theory as described, for instance, by the gaussian approximation y = vz = 
1, i.e. equation (33) reproduces the classical Landau-Khalatnikov result. 

6.2. The critical part 

The critical scattering term contributes both above and below T,. Combining equations 
(30) and (31) we have: 

Performing the integration using dQ(k ,  t )  = 6 Q ( k ,  0 )  exp(-t/tk), one obtains for q = 
0: 

v3 1 
AC$”(O, 0) = kT(2iz)2d bimnbjpr 1 d d k d d k ’  

1 - i4wtk 

We shall see below what approximate general forms this may take. Here we proceed to 
develop the ‘mean-field’ expressions. For this purpose we use a gaussian factorisation 
approximation for the four-point correlation function equivalent to neglecting inter- 
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actions between fluctuations. In this approximation the correlation function is a sum of 
three terms, one of which cancels, upon substitution in equation (34), with the product 
of two-point correlation functions, while the other two, because of symmetry, give 
exactly the same contributions. Equation (34) then becomes 

one obtains 

Making use of the mean-field relations, in the case that t k  is real we can write 

rk - g2/[1 + ( k 5 ) 2 ]  

A C T ( 0 ,  w )  = [2kT/ (2 .~ )~ ]  b imnblm,g4-df ( i~EZ)  

X,,(k, 0 )  - E 2 / P  + (W21 
and equation (46) may be transformed into: 

(37) 
Thus we have obtained a static (w  = 0) exponent p = 2 - d/2 = (Y in the gaussian 
approximation (see, for instance, Ma 1976). The result p = cy is not unexpected since 
the approximation made above does not distinguish between symmetry-breaking and 
non-symmetry-breaking modes. Performing an isotropic integration we find for d = 3 

ACCrll(O, w )  = B*(g/iwr)[(l - liwr)'/2 - 11 (38) 
where B2 is a constant and r - g 2 .  A similar result was obtained by Levanyuk (1966) 
and Pytte (1971a, b), while Bhattacharjee (1982) calculated equation (38) from an n-l- 

expansion to lowest order. For w r  -e 1 this gives 
Re ACCr11 - t-1 2 Im AC? - wt r3  

For 05 % 1 
Re A CCrlt  - 1 2 t 0  Im - 0 - 1  2 t 0  

The total result which reproduces equation (38) in the asymptotic limits W T  6 1 and 
w r  S 1 is: 

A c I l t  = 4B2t-1 2 (1- :iwJ 1'2' (39) 

By a straightforward generalisation based on the same scaling arguments used for 
the two-point correlation function above, we adopt the following approximate dynamical 
scaling form: 

) (40) A p t  = -ACrIft-I4(((1 - ~w~)-P'/YZ 

where p = cy + 2 ( q  - 1) is the static exponent (see table 3). Note that the amplitude of 
r in equation (40) is smaller than t i n  equation ( 3 3 )  by a factor of about two. This is seen 
by comparing the mean-field results equations ( 3 2 )  and (39). 
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Table4. The asymptotically correct, causal, scaling functions for dynamicsymmerrk-ed elastic 
constants. p = cr + 2(p, - 1) and 5 = 70f-y' where t is the reduced temperature. For non- 
symmetry-breaking strains, p, = 1. In the limit w = 0 this table reproduces table 3. In mean- 
field theory (gaussian approximation): y = V I  = p, = 1. cr = 2 - d/2. p = t .  The relaxation 
time amplitude to may be different above and below Tc,  and it may be different for the 
different scattering terms. 

~ ~ 

Coupling T <  T,  T >  T,  

Linear EQ - a y t - ' ( l  - lwt)-Y y z  - a ; t - " ( l  - iwr)-Yyz 

- a ; t - " ( l  - lw5)-u"z 

-a;t2fl- ' (1 - IU?) 
-a ;  f28- F (1 - - l " t ) - f v B )  12 

Quadratic &Q2 - a ; t - " ( l  - 1ws)-" yz 

The results of the above analysis, together with those of a similar treatment for EQ- 
coupling to lowest order in the fluctuations, are given in table 4. 

7. Summary and discussion of ultrasonic velocity and attenuation near critical points 

We are now able to compute phenomenological expressions for the anomalous parts of 
the ultrasonic attenuation, Am, and the velocity, Au.  In 0 2 we have expressed Acr and 
Au in terms of the changes in the elastic response function, AC(w), which we discussed 
in 0 6. Here we will consider the quadratic coupling for T > T, in some detail. The 
treatment can easily be adapted to the other cases listed in table 4: 
A p i t ( o )  = - a l r - p ( I  - i ~ r ) - u / ~ z  = - a3 + t -/J F(iwr) 

= -a; t -pH(wr)  exp[i(p/vz) tan-'wt)]. 

When this is inserted into equation (9) we obtain 

uoAcr/w = At-p'f,(wr) 

Au/uo = At-pg, (wt)  

where A is an unknown amplitude, ,U = CY + 2(g, - 1) and 

f p ( w t )  = sin[(,u/uz) tan-' WT] H,(or) 
g, (wt )  = cos[(p/uz) tan- '  wr] H , ( w s )  

H , ( W T )  = {cos(tan-' ~ r ) } - ~ ' ~ ~ .  

(42) 

(43) 

The following points must be noted. 
(i) In the asymptotic limits U T  < 1 ( T  % Tc) and ut % 1 (T-. T,), equations (42) and 

(43) satisfy the behaviours given in table 5 (Fossum and Fossheim 1984, Fossum er a1 
1984). 

1 one obtains the well known result Acr = moo2t-P where cro = 
( p / v z ) A  ( t 0 / u 0 )  and p = p + uz. Note also that it follows from equation (31) that 

(ii) In the limit wr 

A m -  t - p w 2 t [ l  - ( F " ' ( O ) / F ' ( O ) ) ( W ~ ) ~  + . . . ]  
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Table 5. Critical parts of the sound velocity. Au.  and attenuation. Am, of symmetrised sound 
modes in the asymptotic limits o r  6 1 ( T P  T,) and o r  P 1 ( T +  T J .  The relaxation time 
satisfies t = rOt-"' in the critical asymptotic region. The exponents obey the scaling laws p = 
p + U 2  = a + 2 ( q  - 1) + YZ. 

w r e 1  w r + l  

and 

A" - t - p[ i  - ( F"(o)/F(o)) (ut)' + . . . ]  
when w t  < 1. Thus the lowest-order corrections to the ut 6 1 asymptotic behaviour is 
proportional to (ut)' for both quantities. The amplitudes of the corrections are different, 
however, since 

giving a larger correction amplitude for the attenuation than for the velocity. 
(iii) It is straightforward to derive a smooth function describing crossover from the 

w r  1 regime to the w r  9 1 regime. Simple asymptotically correct dynamic scaling 
forms were proposed by Golding (1975) who studied ultrasonic attenuation in the 
ferromagnet MnP, by Kawazaki (1977) and by Fossheim and Fossum (1984). 

(iv) The present results equations (42) and (43) represent improvements compared 
with earlier published ones (Fossheim and Fossum 1984); they satisfy causality in a strict 
sense. since the total dynamic scaling function has no poles in the upper half-plane. This 
has the important implication that equations (42) and (43) fulfil the Kramers-Kronig 
relations automatically. It is a simple matter to perform the Kramers-Kronig integrals 
approximately in the asymptotic limits W T  < 1 and W T  + 1, to check that the amplitude 
relations of table 5 are the correct ones. For instance in the limit w r  4 1 one obtains 

A u  2 P  - (0 = 0 )  = - P 
"0 X P  

dx 5 - A  - t r U  = (vz/p) At-" 

when vz a p .  This reproduces the results in table 5, when wr < 1. 
(v) The present results are based on phenomenological assumptions. Thus the relax- 

ation time t entering the expressions may represent critical cluster relaxation or any 
other anomalous relaxation time in the system, for instance the time associated with the 
soft-phonon dynamics in structural systems. In the latter case the simplest approximate 
modification of the results would be a simple insertion for t with standard notation (see, 
for example, Shapiro et a1 (1972)): 

r = zr/wZ, 

5 = - - - 1 - = t  propagating damped mode 

purely relaxational (overdamped) mode 

21- , w 
w l  w l  
2r 0 @w;?  
w2, w?, 1 - iw/y 

r = - - i - +  soft mode + central peak. 
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Thus the exponent VZ, and also the pure static ones contained in p ,  may merely be 
effective exponents describing precritical or non-asymptotic exponential behaviour. 

The results of the present analysis are summarised in table 6. A general sound mode 
can be decomposed into symmetrised modes with different exponents g? (see equation 
(11)). Thus in a crystal a single power law behaviour like t-Yor t-U is not to be expected 
in the general case. 

Note that the amplitude AT can be determined both from the velocity and the 
attenuation data. This is important since it represents a check on the internal (Kramers- 
Kronig) consistency of the results. 

Table 6 .  Phenomenological dynamical scaling functions for the symmetrised components of 
sound attenuation, Am, and the sound velocity AIJ. p = (Y + 2(y:  - 1) where q = 1 for non- 
symmetry-breaking sound modes. The A,  are constants, while the sf are phenomenological 
relaxation times obeying sT = r, t-" '  in the critical asymptotic region, where the r;, are 
amplitudes. t = (7' - T,) /T,  is the reduced temperature. Thefandg are defined in equations 
( 5 2 )  and (53). A general sound mode will be a linear combination of symmetrised modes. 
Outside the asymptotic region, correction terms must be included. Mean-field results (gaus- 
sian approximation) are Q? = y = YZ = 2p = 2u = 1 ford  = 3. Note that the so called mixing 
term with amplitude A ;  is possibly forbidden in crystals due to wave-vector conservation 
requirements. 

Quantity 
Coupling calculated T < T,  T >  T,  

~ 

Linear uoAa/w A ; f - " f , ( w t ; )  A ; t - y f y  (tus; ) 
AUIuo A; tP 'g , (os ; )  A i  t P g V (  ws; ) 

Quadratic uoAa/w A ;  t-"f,(wsT) A j t ( [us; ) 
+ A ;  t2@-  Y f,( or;) 
+ A ;  t2p-qfq-  (wrT ) 

+ A ;  12@- ' g y (  os; ) 
+ A ;  t2@-qgq_p (os;) 

AuI.0 A; t -"g , (ws ; )  A ;  t-f'gu( w r ; )  

8. Example: explicit expressions for attenuation and velocity in cubic perovskites 

In 9 3 we gave the effective elastic constants measured experimentally in terms of the 
symmetrised components, C,, C, and C,. These correspond to the fundamental ways of 
distorting the cubic structure, and will therefore each have an associated crossover 
exponent cpa, g?, and qt.  In § 5 we argued that g?, = 1 since this mode is non-symmetry 
breaking. We also argued that g?, = qt = q .  In the case of cubic perovskites g? describes 
the crossover away from the isotropic Heisenberg or possibly cubic behaviour to X Y  or 
Ising behaviour. 

In the cubic high-temperature phase, the order parameter couples quadratically to 
the strain in the perovskites. Using tables 2 and 5 we obtain table 7 .  We neglect 
the contribution from the non-symmetry breaking term C,, since this turns out to be 
negligible in experiments (Fossum and Fossheim 1984, 1985. Fossum et a1 1984, Holt 
and Fossheim 1981). The results are in agreement with Murata (1976), Schwabl and Iro 
(1981) and Iro and Schwabl(l983). 
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Table 7. Theoretical predictions for sound attenuation and sound velocity in major direc- 
tions of cubic systems. The u o  are background velocities. The non-symmetry-breaking 
mode, C,, is neglected. The exponents p and p are defined as p = p + v z  and p = 
(Y + 2(q, - 1). The scaling functions f(or) = g(wr)  --* 1 in the limit ut --* 0, while 
f ( w t )  = (v~/p)sin(lcp/2vz)(wt)-P”~andg(os) = cos(np/2vz)(or)-$ Yzwhen w r e  1. For 
comparison with table 6 : f ( w t )  = (vz/p)f , (wt) /wt,  g (ws)  = g,(wr). 
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