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Abstract. Phenomenological predictions for sound attenuation and velocity anomalies near
critical points are presented. General symmetry properties of the linear elastic constants and
the general properties of the low-and high-frequency behaviours of linear-response functions
are used to develop phenomenological equations, where exponents, relaxation times and
amplitudes are introduced as parameters to fit to the experimental data. Novel interpretation
formulae, which combine the asymptotic high- and low-frequency limits of complex dynamic
elastic constants, are constructed. It is shown that causality requirements give new relations
between the amplitudes of ultrasonic attenuation and the velocity in the asymptotic limits
of high and low frequency.

1. Introduction

Experimental methods used ininvestigations of phase transitions can be divided into two
groups: (i) methods probing local properties and (ii) methods probing the macroscopic
response. Exampies from the first group are electron and nuclear magnetic resonance.
Macroscopic properties are studied by dielectric constant and heat capacity
measurements, and also by scattering experiments, where the external force is generated
by, for example, a beam of light, x-rays, neutrons or acoustic phonons.

The latter case involves measurements of sound attenuation and velocity, since an
applied sound wave may be considered as spatially homogeneous, i.e. £7!'> g = Ointhe
experimentally accessible region. Here, § is the correlation length and ¢ is the wave-
vector (A4 ~ 50 um is a typical ultrasound wavelength).

Nice illustrations of the statements made above with respect to local and macroscopic
probes may be found in the papers by Halperin and Hohenberg (1967) and Leung et a/
(1979).

Ultrasound experiments near phase transitions in a number of systems (magnetic,
liquid—gas, structural) have recently revealed dynamic scaling within the asympiotic
region. This means that the dynamic elastic response function is found to behave accord-
ing to the dynamic scaling hypothesis, with a macroscopic relaxation time obeying
T~ £f(q§), where z belongs to one of the dynamic universality classes. Some of the
many examples to be found in the literature are given in a recent review by Fossheim
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and Fossum (1984). It is interesting to note that most examples of dynamical scaling of
sound have been observed only during the past 3-4 years. These observations have lent
increasing importance to the whole problem of the critical dynamics of sound.

The purpose of the present paper is to present a phenomenological description of
these problems. The treatment will apply general symmetry arguments and simple
analysis of linear response theory to construct theoretical models for sound near critical
points. Thus, the treatment contains no theoretical technicalities. The general state-
ments and results will be illustrated throughout the article on a system of cubic symmetry.

In §2 of the present paper the connection is established between the complex
elastic modulus and the sound velocity and attenuation. Section 3 contains symmetry
considerations, concepts such as symmetrised and effective components of elastic con-
stants are introduced. Various types of coupling between the order parameters and
mechanical variables are consideredin § 4. In § 5simple equilibrium statistical mechanics
isappliedto derive scaling laws expressing the critical exponents of static elastic constants
in terms of exponents of other thermodynamic quantities. It will be shown that only the
symmetrised elastic constants can be expected to obey simple power law behaviour close
to critical points, since the symmetrised components represent fundamental ways of
distorting a given symmetry.

In § 6the natural extension to include dynamics is presented. Linear response theory
is applied to derive causal dynamic scaling functions. An exact result is found in the
gaussian approximation, whereas a straightforward generalisation is made to other
cases.

Results and expressions for sound velocity and attenuation are summarised and
discussed in § 7, while an illustrative example is given in § 8.

Together with the present article we also publish an experimental paper on ultra-
sound experiments above the phase transition in SrTiO; (Fossum and Fossheim 1984,
1985, Fossum et al 1984) where the theory discussed below will be applied in the data
analysis.

2. Ultrasound anomalies and mechanical response

The quantities most frequently measured in an ultrasonic experiment are (i) the sound
velocity, v, and (ii) the sound attenuation, . A measurement of v and o determines the
full complex linear elastic modulus:

C = ReC +iIlmC. (1)
C may be defined through Hooke's law
o= Ce 2)

where o is the mechanical stress and ¢ is the strain. For simplicity the tensor indices are
dropped in equation (1). Anisotropy will be discussed in the following chapters. In
general, the thermodynamic quantity C contains information about all kinds of micro-
scopic processes in the system which is studied. Near a phase transition C, as with any
other susceptibility, will be split into two parts:

C=Cy+AC (3)

where AC s the critical part and C, is the background part. C, contains no information
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about the phase transition and is thus assumed to be a smooth function of the fields
relevant to the critical behaviour (temperature, pressure, magnetic field etc).

Assuming ImC <€ Re C and Re AC < Re(, it is straightforward to derive the fol-
lowing expressions for the anomalous parts Av and Aa of the velocity and attenuation
respectively:

Av/vy = (1/2pv%) ReAC (4)
voAa/w = (1/2pv3) ImAC

where v = ReCy/p is the background velocity squared, and p is the density of the
medium.

3. Linear elasticity: symmetry considerations

When crystal anisotropy is taken into account, Hooke’s law, equation (2) is replaced by

g; = Cz‘jkl Ex (5)

or
Ej = Sijkl O (6)

where summation over repeated indices is understood. o;; = 0j;is the elastic stress tensor
and g;,; = € is the linear elastic strain tensor.

The fourth-rank tensors Cjy; and Sy, are the linear elastic constant and the linear
compliance respectively.

Introductions to linear elasticity, including discussions of the validity of Hooke’s law
are, for example, given by Landau and Lifshitz (1959), Nye (1960) and Pollard (1977).
Details will not be cited here.

Note, however, that the elastic constants measured in ultrasound experiments are
the adiabatic ones. The reason is that the ultrasound frequency, w, is too high for the
temperature variations accompanying the sound wave to be transported across adistance
of one acoustic wavelength during times of the order of one period (27/w). One can
then regard any part of the body as thermally insulated at all times, i.e. the wave motion
is adiabatic. One case where a distinction between isothermal and adiabatic responses
is important, is close to elastic phase transitions, i.e. structural transitions where the soft
mode is an acoustic phonon (Rehwald 1973).

Afourth-rank tensor, suchas Cor §, generally contains 81 independent components.
This number is reduced drastically by symmetry. In the cubic case there are three
independent components of the elasticity tensory, namely Cy;, Cy; and Cyy, where the
short-hand Voigt matrix notation has been applied (see, forinstance, Pollard (1977)). In
isotropic systems there are only two independent components, since Cyy = #(C;; — Cp3).
while in lower symmetries there are more than three independent components (Nye
1960).

The Helmholtz elastic free energy may be written to lowest order in the strain:

F= %Ctjkleijskl = %Cmn Em€y = %C,G% (7)

where summation over repeated indices is understood, and the Cs are isothermal elastic
constants.

The last equality in equation (7) may be obtained after diagonalising the elastic
modulus matrix [C,,,], or more easily by applying the group theory for the construction
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of invariants. An important and useful group theoretical result in this context is the
generalised Unsold theorem, which states that (Tinkham (1964) p 81):

I’
2 e
k=1

is invariant under all operations of the point group for which ¢ are the basis functions
of an irreducible representation r of dimension /,.

The elasticstrain which is a second-rank tensor, transforms as the functions quadratic
in the cartesian coordinates. These functions are usually listed in the character tables of
the point groups, and a free-energy expansion on the diagonalised form F = $C, e? may
thus easily be constructed. The strain components ¢, (=some linear combination of
various ¢;), and elastic modulus components C, (=some linear combination of the
various Cyy,) obtained in this way are referred to as symmetrised components, since the
various terms, 7, correspond to the fundamental ways of distorting a given symmetry by
external homogeneous strain. The ¢, transforming under the identity representation are
non-symmetry-breaking. If all the C,components are positive the crystal is stable against
deformations. If, however, one of them, C,, say, decreases to zero, which may happen
close to elastic phase transitions, the crystal may distort into a new structure determined
by the strain ¢, (Cowley 1976). This property of the symmetrised energy expansion,
then, determines the elastic stability of the crystal lattice.

As an example, we again consider the case of cubic symmetry. Using equation (7)
the free energy in cubic symmetry may be written:

F=13C 66, =3C1 (€] + &5 + £3) + Cpp(€16, + €185 + £2€3)
+3Cyy (] + €3 + €5). (8)

Applying the Unsdld theorem to the second-order functions listed in the character table
of the cubic point group, Oy, (see, for example, Wooster (1973) p 326), one obtains:

F=4C,el +3C. (€3, + €2,) + 3C (e}, + €%, + €2,) 9)

where the connection between the quantities in equations (8) and (9) is given in table 1.

Generally in a crystal there is a possibility of three waves with different velocities for
given directions of propagation. Only in certain directions of a crystal will these be one
pure longitudinal and two pure transverse waves. One may define an effective elastic

Table 1. Symmetrised elastic constants and symmetrised strains in cubic symmetry. The
strains are termed according to in which way the cubic structure is distorted in each case.

Symmetrised Symmetrised Transforms
elastic modulus homogeneous strain Term under
C,=3(C,, +2Cp) e, =6+ &+ € Hydrostatic strain Ay
C.=43C,, — Cy) £, = £ £ Orthorhombic strain E,

€, =3717(3e; - &) Tetragonal strain
C.=Cy £, = & Trigonal strains Tae
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constant for each of these waves:

vi= Ceff/P (10)
where C. is some linear combination of some, or possibly all, of the independent
components Ciy;.

Equivalently C.i may be expressed in terms of the symmetrised elastic constants C,
as

Ci=2 C, (11)

where £, includes coefficients and also denotes that some of the C, may be missing.
Equation (11) means that when a sound wave with a given direction of propagation and
agiven polarisation is applied the effective mode can generally be decomposed into some
of the symmetrised modes.

In a cubic crystal, waves propagating along one of the major directions [100], [110]

or [111] will be pure longitudinal or pure transverse. Some examples are given in
table 2.

Table 2. Examples of effective elastic constants for some pure modes in cubic symmetry.
The effective components are expressed in terms of the symmetrised components given in

table 1.
Direction of Direction
propagation cosines Polarisation Ces = pv?
q Ny, Ny, Ny TEUREN =%, Cmm =2%,C,
[100] 1,0,0 Longitudinal Ch=C,+1C,
(u; #0,u, = u;=0)
[100} 1,0,0 Transverse Cyy=C,

(uy=0,u,oru, #0)

[110] 1/V2,1/V2,0 Longitudinal HCyy + Cpy + 2C4)
(uy=u; #0,u;=0) =C,+13C. + C,
[111] 1/V3,1/V/3,1/V3  Longitudinal Cy +2C, +4Cy)

(uy=uy=u; #0)

=C,+13C,

4. Coupling between the order parameter and the mechanical variables

We want to specify the coupling between the strains, ¢;, and the ordering quantity Q,
i.e. give the coupling term H_ in the Hamiltonian. Depending on symmetry three

main types of coupling may dominate (summation over repeated indices, and a space
integration fd% is understood):

(i) Linear: H. ~ a;&,Q,
(i) Quadratic: H; ~ by;£,0,Q,
(iii) Quadratic: H, ~ d;;€,6,Q;.

Of these (i) and (iii) can only exist for certain symmetries, while (ii), which is the strictive
type, will exist in all matter. It may therefore be said to be the most important one.

Case (iii) will not be discussed here, since it is rarely observed (see, for instance,
Hochli and Scott (1971)).

C29—E
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A coefficient in the expansion of H_ can exist only if the corresponding symmetric
powers of Q; and ¢, belong to the same irreducible representation. This is an extended
version of the Unsold theorem for construction of invariants, cited in § 3, i.e. one may
replace the squares of the base functions, with products of different base functions
belonging to the same irreducible representation (Rehwald 1973, Tinkham 1964).

As asimple example we derive the coupling Hamiltonian valid for cubic perovskites
(see, for instance, Aharony (1978)).

In the perovskites the order parameter is an axial vector transforming according to
the irreducible representation T, of the cubic point group O,. None of the symmetrised
strain components (table 1) transform according to T, i.e. no linear coupling term
exists in this case. The squares of the order parameter components transform as an
ordinary vector squared, i.e. in the same way as the symmetrised strains. Applying the
extended Unsold theorem one obtains

Ho= [a% [b,a(Q1 + 03+ 0 + blec (0F - 01 + 372, (303 - 10)]
+b(e, 0,05 +£,0,05 +€,0,0,)} (12)
which may be transformed into a similar form as that of Aharony (1978) with b, = B,
b. = 8B, b, = B,. Amore detailed treatment of H. in cubic symmetry is given by Henkel
et al (1980). A listing of the symmetry properties of the order parameter in a large
number of structural systems is given by Rehwald (1973) and Lithi and Rehwald (1981).

5. Static electric constants near critical points

The static thermodynamic properties may in principle be determined from the singular
part of the free energy:

F=—(kT/V)InZ (13)
where V is the volume and the partition function is
zZ= % exp(—BH). (14)

Here 8 = 1/kT, and H is the order parameter dependent part of the Hamiltonian. For
example, the following Landau-Ginzburg-Wilson (LGW ) Hamiltonian H is believed
to be relevant to the critical behaviour in cubic perovskites (Aharony 1978):

H= [ atx g +iv0R <l + v T 0t -3 (22 ] em. a9

Here the first three terms are the isotropic ones, while the terms with coefficients vy and
f represent cubic anisotropy and anisotropic dispersion respectively. H, takes coupling
to strain degrees of freedom into account, and is given in equation (12). In equation (15)
only r = ro(T — T,)is assumed to depend strongly on temperature. The sum in equation
(14) runs over all possible order parameter configurations. The singular part of the
isothermal elastic constant is defined through equation (7):

AC,,, = 8°F/d¢e,d¢, (16)
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where the Voigt notation is used. It is straightforward to combine the three equations
(13), (14) and (16) into

3w = =5 (e 2er) ~ e (e )

where
1
(Y) = 22 Y exp(—BH).
{0}

A term of the order of (3°H/d¢,d¢,) is omitted, since we do not consider the £2Q-
coupling here.

If the symmetric form of the strain-order parameter coupling Hamiltonian H. is
known, the different components of the static elastic tensor may now be given in terms
of order parameter correlation functions:

(i) Linear H_ ~ a,,;¢,, 0,

AC,, ~ amianj(<Qin> - <Q:><Q1>)
(ii) Quadratic H, ~ b€, Q;Q;
ACun ~ brbui({Q:Q,0: 00 — (Q: Q{0 Q).

From this one expects AC3%" ~ t~7in the linear coupling case, where t = (T ~ T.)/T.is
the reduced temperature.

As amore explicit example we consider the cubic perovskites. H_is given in equation
(12) and the symmetrised elastic constants in table 2. Equation (17) yields the following
four-point correlation functions in agreement with Murata (1976):

bZ

AC, = = o | dr [ 4% (1R 100)P) - (R(PIRE) ) (18)
b2

aC.= - 5 [ atr [atr((010) - Q3 () - 036 ) (19)
b

8= = o [ a4 [ 4410, (00:0) (21 02()) (20)

where (Q%(r) — Q3(r)) = 0Ois used.

Note that in the isotropic approximation one must expect the same critical behaviour
for C. and C, since ((Q — 03)(Q1 — Q3)) = ((©10,)(Q:Q>)) as is seen by performing
a rotation in the order parameter space (Murata 1976). Note also that the heat capacity
is simply related to AC,

i <£1§£>_<£1><ﬁ> AC
at? at ot ot/ \ at e

since the important temperature dependence of H is given by H ~ t|Q|%. Therefore one
expects AC, ~ t~%, which is generally valid for non-symmetry-breaking strains such as
€,. The connections between elastic constants and the heat capacity are known as Pippard
relations (see Hamano and Hirotsu 1979). These qualitative statements are in agreement
with the results of Murata (1976), who calculated the exponents for C,, C. and C,. We
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will not follow his development here. Instead we will derive exponents for the static
elastic constants, starting from the scaling hypothesis (Fisher 1974):

F=172Yp(h/t®, e, /t%m). (21)

Here h is the field conjugate to the order parameter, A = 3 + y, and the mechanical
strain component g, is included as a relevant parameter with corresponding cross-
over exponent g . Note again that since we want to calculate elastic constants
~9%F/3€%,, we have chosen the strain &, as the relevant field in equation (21). Usually
one chooses the mechanical stress, which is the externally variable field in this case.
Note also that the components of the elastic modulus we calculate in this way will be
symmetrised ones, defined through equation (7), since they correspond to the fun-
damental ways of distorting the structure. Thus there will generally be one crossover
exponent @, associated with each symmetrised strain &,,. In the following the subscript
m on @ will be dropped for simplicity.

Non-svmmetry-breaking strains, for example, the hydrostatic strain &, in the cubic
case, or a strain along the c axis in a tetragonal crystal, will not be relevant to the
critical behaviour. This means that they will generally not transform the system into
a new universality class. However, 7, may be changed by such strains, since the 7/Q|?
term in the Hamiltonian will be renormalised, as may be seen from equation (15) for
non-zero &,. Denoting the non-symmetry-breaking strain ¢, one can write:

F=(t+a'e) % =1"%fe,/1). (22)

Here a’ is some constant and f(x) = (1 + a’x)*~%. Thus
AC ~ 3°F/oe? ~ 17« (23)

for small perturbations ¢,

Symmetry-breaking strains will generally change the universality class. Mechanical
strains that couple linearly to the order parameter are equivalent to the field / in the
free-energy expression, equation (21). Hence, in the case of linear coupling (H, ~ £Q)
one may write

F=1°Y(e,/t*) 24
and
AC ~ §2F[ged, ~2-a=28 =y (25)

where the scaling law a + 23 + y = 2 was used.

When the mechanical variables couple quadratically to the order parameter,
H,.~ £Q?, one has to consider the cases T< T, and T > T, separately. For T< T,
the mean value of the order parameter Q,=(Q)+#0, which means that
H.~2eQ60 + €6Q56Q, where we drop the tensor indices for simplicity. There is
now one ‘field’ ~eQ, that in effect couples linearly to the order parameter fluctuations,
in addition to € which alone couples quadratically. Thus for 7 < T, one may write

F=0""Yp(enQo/1*, n/1%) (26)
which gives three contributions to the elastic constant
AC ~ 32F/3gk, ~ 1377 4 t7# 4 ¥-¢ (27)

where the relation Q) = (Q) ~ ¢# and the scaling law a + 28 + v = 2 have been used.
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The exponent y is given by u = o + 2(¢ — 1). Amplitudes have been omitted in this
discussion. Above T, linear coupling £,(Q, is absent. Thus in this case

AC~1t7¥ (28)

@ is in the cubic perovskite case believed to be equal to the crossover exponent away
from an isotropic Heisenberg, or possibly cubic, behaviour to XY or Ising behaviour.

As discussed above, the elastic constants may be expressed in terms of correlation
functions. In the quadratic coupling case, these contained four order parameter
components: AC ~(QQQQ), where subscripts have been dropped for simplicity.
Writing Q = Qg + 80 one may iderntify the three terms appearing in equation (37) as

Q0Q0(6Q06Q) ~ 177
(0Q6Q06Q6Q) ~ 17*
04(6Q8Q08Q) ~ 177,

Of these the term resulting from the three-point correlation function is usually
neglected in the literature. The existence and importance of this term was stressed by
Ferrell and Bhattacharjee (1981). Note that in mean-field theory. where fluctuations
are neglected, all the exponents of the quadratic coupling case will be equal to zero.
One will only observe a step at T, (Rehwald 1973). The divergence discussed above
is due to fluctuations. Note also that although we have derived exponents for elastic
constants, the same critical exponents will govern the symmetrised elastic compliances
since we have considered the diagonalised version of the elastic free energy.

Apparently the present analysis gives a divergence of elastic constants close to
critical points. This is, of course not physically correct since elastic constants become
smaller near T, and in some cases, such as elastic phase transitions. go to zero. The
quantities that diverge are the elastic compliances. However, as long as the anomalous
part, AC = C ~ Cy,ismuch smaller than the background part, C, itis correct to express
ACand ASin terms of the same exponent. Here the total compliance § = S, + ASis the
sum of a background part S, and an anomalous part AS. Inserting into C = 1/S one
obtains AC = —CjAS when AC < C,. Since the elastic matrix is diagonal in the sym-
metrised version, the relation C = 1/S is valid when C and S refer to corresponding
symmetrised elastic constants and compliances.

Formally, it would therefore be slightly better to calculate the critical behaviour
of the elastic compliances. The present calculation is a more direct approach, in which
thermodynamics in a strict sense is sacrificed. In an ultrasound experiment. the given
quantity, the external field, is the stress, and not the strain which was chosen for
convenience in the present case. The correct potential to consider is then not the
Helmholtz free energy F as indicated for instance in equation (13), but rather the
Gibbs free energy G. It is meaningless to take the derivatives of G with respect to the
strains. One must instead write the coupling Hamiltonian H. in equation (12) in terms
of stress components, and the ‘new’ corresponding coupling constants. The second
derivative of G with respect to the symmetrised stresses yields symmetrised com-
pliances which may then be inverted as described above to obtain the symmetrised
elastic constants.

These formal considerations, which also apply to the treatment given in the
following section where dynamics is discussed, do not invalidate the results as far as
exponents of elastic constants are concerned. The results are summarised in table 3.
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Table 3. Leading singular terms for swatic symmetrised elastic constants or compliances.
Scaling law: g = a + 2(¢ — 1). Instatic mean-field theory where fluctuations are neglected,
only the linear case H, ~ £Q will have an exponent different from zero (see also Rehwald
(1973) and Aharony and Bruce (1974)).

Coupling T<T, T>T,
Non-symmetry breaking art e art™?
Linear eQ a;tv a;tv
Quadratic £Q? ast i+ airhy 4 gre¥ow asr

6. Dynamic elastic response near critical points

In this section we turn to the dynamics of the elastic constants near critical points.
Parts of this discussion follow closely that given by Fossheim and Fossum (1984).

The response function, or susceptibility, which may be directly studied by ultrasonic
methods is the complex elastic stiffness tensor defined through the (classical) fluctuation-
dissipation theorem (Kubo 1966), as the following integral over the correlation of
fluctuating internal stress 65,(0, 0) and its time derivative do,(r, t):

Cylg, ) = Eli"J’ d‘irj’oc dtexp(—ig - r) exp(+iwt)(do,(r, 1)60,(0, 0)). (29)
0

Here the spatial integration is over the volume of the system, g and o are, respectively,
the wave-vector and the frequency of the acoustic wave, k is Boltzmann’s constant,
and T is temperature. The fluctuation-dissipation theorem, equation (29), is derived
assuming an external harmonic perturbation of the equilibrium system. In the present
case this perturbation is the applied sound wave. The theorem states that the /inear
response of a given system is expressed in terms of the fluctuation properties in the
system, in thermal equilibrium. The best way to proceed is by Fourier transformation of
the spatial dependence of d0;. In addition, we choose to extract the statics by performing
a partial integration over the time variable. After these changes equation (29) becomes:

V
Cij(q’ 0)) =- ;(—T<60i(q’ 0)60}(_‘], 0)>

Ve
—-iw ﬁfo drexp(iwt)(do;(q, t)d0;(—q, 0)). (30)

Here the first term is purely static, and hence, as we shall see, contains all the terms
discussed in the previous section on statics.

To proceed one must make some assumptions about the decay behaviour of the
order parameter fluctuations 6Q,. The simplest case will, of course, be to assume
purely relaxational behaviour 6Q,(q, t) = 6Q,(g, 0) exp(—1t/t,), corresponding to an
overdamped phonon description in structural systems when 7, is real (giving essentially
mean-field-like results). To generalise the treatment, however, one may allow 7, to be
a time-dependent quantity. Further generalisation requires the use of scaling forms for
the dynamical susceptibility.
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Such amodification can be done approximately at the end of the calculation, since the
results will be expressed in terms of the total relaxation time 7,. Even more sophisticated
models, including the central mode in structural systems, may be approximated in the
same way. We return briefly to this question below.

In the simplest case the relaxation time is expressed as 7, = §°f(q§) (Ferrell etal 1967,
Halperin and Hohenberg 1967, 1977) where £ is the correlation length and z is the
dynamical exponent which is near two for a non-conserved order parameter and near
four for a conserved one. We discuss only the quadratic coupling case (¢Q? coupling),
since the results are easily generalised to other cases.

The fluctuation of internal stress is

(50,‘(", t) = bijI(Qj(r? [)Ql(r’ t) - <Qj(r’ I)Q](r, t)>)
or

Vb (.,
G’ [ 44K,k 00~k + 4,0 = (©, (k. 00:(~k + 4. 0)).

60;(g,1) =

Writing Q; = Qy; + 8Q;, where Qy, is the average of Q;, we obtain two terms in 80;:

1%
b0i(q,t) =2b;,0Q¢60,(q. 1) + W by fddk[éQj(k’ N6Q,(~k+gq,1)

—(0Q;(k, )6Q,(~k + g, 1))]. 3D

Inserting this in equation (30) we obtain three types of non-vanishing correlation func-
tions, a two-point correlation which gives the so called Landau-Khalatnikov term
(Landau and Khalatnikov 1951, hereafter LK), a four-point correlation which we may
call the critical scattering term, and a three-point correlation which represents a mixing.
The latter will not be discussed further, but the phenomenological extension of mean-
field results to be given below, is valid for this term as well. See also table 3.

6.1. The LK term
The LK term is given by:

4V
ACEJ‘K(q’ (U) == ﬁ-bimnbjprQOm QOp (<6Qn(qa 0)6Qr(—-q’ 0)>

“io [ drexp(ion(60,(a.050.(~¢,0))
Q

= 4bimn bjprQOm QOanr(qv w) (32)

Using the simple relaxation form for 8Q, mentioned before would now lead to the well
known mean-field results for the LK contributions:

Xnr (g, ©) = 2, (g)/(1 — 7).

To obtain more general forms we have to use scaling arguments. We write the order
parameter susceptibility as

Xnr (g, @) = x = x(q,0)f(iwT)
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where f(iwT) is some scaling function. By the expansion of f(iwt) we see that
Rey~t77

} foror < 1.

Imy~t7owr

Analogous to the static case where the susceptibility only diverges for g = 0, we must
require that y does not diverge at 7, when w # 0, i.e. y ~ ¢° for wr > 1 (Landau and
Lifshitz 1981). This leads to

Re y ~ t ™ (wT) V"
* (1) } forowr> 1.
Imy ~ t 7 wr(wt) " 1Y
Both limits may be combined in a scaling form, for instance as follows
ACH(0, w) = —AYXE77(1 — iwT) 77 (33)

where this particular form is chosen to fulfil causality requirements. This function has
no poles in the upper half-plane. The only instability occurs for w — 0, §— «. For a
detailed discussion of linear response near phase transitions, we refer to Thomas (1976).
In mean-field theory as described, for instance, by the gaussian approximationy = vz =
1,1i.e. equation (33) reproduces the classical Landau-Khalatnikov result.

6.2. The critical part

The critical scattering term contributes both above and below T,. Combining equations
(30) and (31) we have:

| V3
ACFH(q, w) = mbzmnbjp,fddkddk’

x (80 (k, 0050, (~k + 4,000, (k' 0060, (k' - ¢.0)
— (80 (K, 0)8Q, (~k + 4, 080, (~k', 0)50, (K’ =, 0)
Fio [ drexp(+ia0{(6Q, (K D3, (~k + 4,100, (~k .0
;
x 80, (K - q,0)
— (80 (k, 08Q,(~k + 4,160, (~K 050, (k' = 4.0)]).
Performing the integration using Q(k, 1) = 6Q(k, 0) exp(—1/7,), one obtains for g =

0:
3

, __r 1
AC5(0. 0) = pro—s bimnbjprfddkddk Ty
X [(6Qm(k, 0)8Q,(—k,0)6Q,(—k',0)6Q,(k', 0))
= (6Q(k, 0)86Q,(—k,0))(8Q,(—k",0)8Q,(k", 0))]. (34)

We shall see below what approximate general forms this may take. Here we proceed to
develop the ‘mean-field’ expressions. For this purpose we use a gaussian factorisation
approximation for the four-point correlation function equivalent to neglecting inter-
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actions between fluctuations. In this approximation the correlation function is a sum of
three terms, one of which cancels, upon substitution in equation (34), with the product
of two-point correlation functions, while the other two, because of symmetry, give
exactly the same contributions. Equation (34) then becomes

. 2v?
ACE™(0, w) = mb,mnb}p,fddkddk’l - (00 (k. 0060, (~ ', 0))
X (8Q,(—k. 0)6Q, (K", 0)). (35)

Using
(80, (k,0)6Q,(=k",0)) = (KT/V) X i (k, 0)0,,, 6(k — k')
one obtains

. 2kT d%%
et = — ——— -
ACU (O! w) (2_7[)d btmnb/mn f 1+ i%a)rk Xmm(kv O)Xnn( k& 0) (36)

Making use of the mean-field relations, in the case that 1, is real we can write
~ &/[1 + (k§)?] x;i(k, 0) ~ E/[1 + (k&)?]
and equation (46) may be transformed into:
Acz(/;m (O, CU) = [2kT/(2’T)d] bimnbjmn 54—df'(iw§z) (37)

Thus we have obtained a static (w = 0) exponent u =2 — d/2 = a in the gaussian
approximation (see, for instance, Ma 1976). The result 4 = a is not unexpected since
the approximation made above does not distinguish between symmetry-breaking and
non-symmetry-breaking modes. Performing an isotropic integration we find ford = 3

ACT™(0, w) = B*(&/iwn)[(1 — Hwr)V? - 1] (38)

where B? is a constant and 1 ~ 2. A similar result was obtained by Levanyuk (1966)
and Pytte (1971a, b), while Bhattacharjee (1982) calculated equation (38) from an n™!-
expansion to lowest order. For w7 < 1 this gives

Re ACCrt ~ ¢~12 Im ACET ~ =32
Forwr>1
Re ACEt ~ p1/240 Im ACCT ~ 1240,

The total result which reproduces equation (38) in the asymptotic limits wt <1 and
wt > 1lis:
1 1/2
ACCHt = 1g2,-172 ( i ) . 39
! 1-tor (39)
By a straightforward generalisation based on the same scaling arguments used for

the two-point correlation function above, we adopt the following approximate dynamical
scaling form:

Accm = __ACritt—u((l — iwr)"‘/") (40)
where 4 = o + 2(¢@ — 1) is the static exponent (see table 3). Note that the amplitude of

Tin equation (40) is smaller than 7 in equation (33) by a factor of about two. This is seen
by comparing the mean-field results equations (32) and (39).
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Table4. The asymptotically correct, causal, scaling functions for dynamic symmerrised elastic
constants. u = a + 2(@ — 1) and 7 = 7,+"** where ¢ is the reduced temperature. For non-
symmetry-breaking strains, ¢ = 1. In the limit w = 0 this table reproduces table 3. In mean-
field theory (gaussian approximation): y = vz = ¢ = 1. @ =2 — d/2. § = }. The relaxation
time amplitude t, may be different above and below T, and it may be different for the
different scattering terms.

Coupling T<T, T>T,

Linear eQ —a;t77(l —ilwr)" "™ —a7 (1 — iwr) 7"
—az (1 —iwr) ™"

Quadratic eQ?  —a; ¥ 7(1 ~iwt) "™ —as 74 (1 — iwr) ™
—as 177 (1 —iwt)~(F - Ae

The results of the above analysis, together with those of a similar treatment for £Q-
coupling to lowest order in the fluctuations, are given in table 4.

7. Summary and discussion of ultrasonic velocity and attenuation near critical points

We are now able to compute phenomenological expressions for the anomalous parts of
the ultrasonic attenuation, A, and the velocity, Av. In § 2 we have expressed Aw and
Av in terms of the changes in the elastic response function, AC(w), which we discussed
in § 6. Here we will consider the quadratic coupling for T > T, in some detail. The
treatment can easily be adapted to the other cases listed in table 4;

ACE (@) = —ait™#(1 — iwT) ¥** = ~aj 1t *F(inT)

= —ait “H(wt) expli(u/vz) tan"! w1)]. (41)

When this is inserted into equation (9) we obtain
voAaj/w = At™#f,(w1) (42)
Av/fvy = At7#g,(w7) (43)

where A is an unknown amplitude, y = o + 2(¢ — 1) and
fu(w7) = sin[(u/vz) tan™! wr] H,(wT)
g, (wt) = cos[(u/vz) tan ! wr] H,(wT)
H,(wt) = {cos(tan™! wr)}~#*2.

The following points must be noted.

(i) Inthe asymptoticlimits wt < 1(T > T.)and wt > 1 (T — T.), equations (42) and
(43) satisfy the behaviours given in table 5 (Fossum and Fossheim 1984, Fossum et al
1984).

(ii) In the limit wt < 1 one obtains the well known result Aa = ayw?™° where a, =
(u/vz)A (1o/vo) and p = u + vz. Note also that it follows from equation (31) that

Aa~ 1740?11l = (F"(0)/F'(0))(w1)* +...]
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Table 5. Critical parts of the sound velocity, Av, and attenuation, Ae, of symmetrised sound
modes in the asymptotic limits wr <1 (7> T,) and wr > 1 (T— T.). The relaxation time
satisfies 7 = tor~*in the critical asymptotic region. The exponents obey the scaling laws p =
u+vz=a+2(p—1)+ vz

wr<l wr>1
voAa/w Alu/vz)Towt™*? Asin(u/2vz) (wte) ™4
Av/v, Are A cos(u/2vz) (wrg) ™

and
Av ~t = u[l = (F"(0)/F(0)) (wT)* + .. ]

when w7t < 1. Thus the lowest-order corrections to the wt < 1 asymptotic behaviour is
proportional to (wT)?for both quantities. The amplitudes of the corrections are different,
however, since

[F"(0)/F'(0)] = |(u/vz = 1) (u/vz = 2)| > [F'(0)/F(O)| = [(u/vz) (u/vz — 1)

giving a larger correction amplitude for the attenuation than for the velocity.

(iii) It is straightforward to derive a smooth function describing crossover from the
wt <1 regime to the wr > 1 regime. Simple asymptotically correct dynamic scaling
forms were proposed by Golding (1975) who studied ultrasonic attenuation in the
ferromagnet MnP, by Kawazaki (1977) and by Fossheim and Fossum (1984).

(iv) The present results equations (42) and (43) represent improvements compared
with earlier published ones (Fossheim and Fossum 1984); they satisfy causality in a strict
sense, since the rotal dynamic scaling function has no poles in the upper half-plane. This
has the important implication that equations (42) and (43) fulfil the Kramers-Kronig
relations automatically. It is a simple matter to perform the Kramers-Kronig integrals
approximately in the asymptotic limits wt <€ 1 and w1 > 1, to check that the amplitude
relations of table 5 are the correct ones. For instance in the limit w7 < 1 one obtains

A 1 * Aalx 2
—v(w=0)=—PJ UO—,deZ—ABt‘“=(vz/u)At““
Uy A N Tou

when vz = u. This reproduces the results in table 5, when wr < 1.

(v) The present results are based on phenomenological assumptions. Thus the relax-
ation time 7 entering the expressions may represent critical cluster relaxation or any
other anomalous relaxation time in the system, for instance the time associated with the
soft-phonon dynamics in structural systems. In the latter case the simplest approximate
modification of the results would be a simple insertion for T with standard notation (see,
for example, Shapiro et al (1972)):

1=2T w3 purely relaxational (overdamped) mode
2w .
T= Pl 152— = T, propagating damped mode
62 ;3
= 2-12; -1 @ @ soft mode + central peak.

+_—._
w2  wi 1—iw/y
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Thus the exponent vz, and also the pure static ones contained in 1, may merely be
effective exponents describing precritical or non-asymptotic exponential behaviour.

The results of the present analysis are summarised in table 6. A general sound mode
can be decomposed into symmetrised modes with different exponents ¢ (see equation
(11)). Thus in a crystal a single power law behaviour like t~7 or r™# is not to be expected
in the general case.

Note that the amplitude A can be determined both from the velocity and the
attenuation data. This is important since it represents a check on the internal (Kramers—
Kronig) consistency of the results.

Table 6. Phenomenological dynamical scaling functions for the symmetrised components of
sound attenuation, A, and the sound velocity Av. y = a + 2(¢ — 1) where ¢ = 1 for non-
symmetry-breaking sound modes. The A, are constants, while the 77 are phenomenological
relaxation times obeying t7 = r5¢7** in the critical asymptotic region, where the 1 are
amplitudes. r = (T — T.)/T.is the reduced temperature. The fand g are defined in equations
(52) and (53). A general sound mode will be a linear combination of symmetrised modes.
Outside the asymptotic region, correction terms must be included. Mean-field results (gaus-
sian approximation) are ¢ = y = vz = 2 = 2u = 1 ford = 3. Note that the so called mixing
term with amplitude A< is possibly forbidden in crystals due to wave-vector conservation

requirements.
Quantity
Coupling calculated T<T, T>T,
Linear voAa/w A (wT7) ATtrf (wT3)
Av/vg Azt77g (0T7) A7t77g,(077)
Quadratic voAa/w Ajrtf (oT7) At (013)

+A; B (w7])
+ATf 5 (0T7)
Av/v Ajttgu(oT3) Asteg, (o))
+A; P g (077)
+AF 1P vg . g (w15)

8. Example: explicit expressions for attenuation and velocity in cubic perovskites

In § 3 we gave the effective elastic constants measured experimentally in terms of the
symmetrised components, C,, C, and C,. These correspond to the fundamental ways of
distorting the cubic structure, and will therefore each have an associated crossover
exponent ¢,, @. and @,. In § 5 we argued that ¢, = 1 since this mode is non-symmetry
breaking. We also argued that ¢, = ¢, = @. In the case of cubic perovskites ¢ describes
the crossover away from the isotropic Heisenberg or possibly cubic behaviour to XY or
Ising behaviour.

In the cubic high-temperature phase, the order parameter couples quadratically to
the strain in the perovskites. Using tables 2 and 5 we obtain table 7. We neglect
the contribution from the non-symmetry breaking term C,, since this turns out to be
negligible in experiments (Fossum and Fossheim 1984, 1985, Fossum et al 1984, Holt
and Fossheim 1981). The results are in agreement with Murata (1976), Schwabl and Iro
(1981) and Iro and Schwabl (1983).
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Table 7. Theoretical predictions for sound attenuation and sound velocity in major direc-
tions of cubic systems. The v, are background velocities. The non-symmetry-breaking
mode, C,, is neglected. The exponents p and u are defined as p = u + vz and u =
a + 2(@ ~ 1). The scaling functions flwt) = g(wt)— lin the limit wt — 0, while
fot) = (vz/u)sin(ru/2vz) (01)"#* and g(wT) = cos(ru/2vz) (wt) ™" when wr > 1. For
comparison with table 6: f(wt) = (vz/u)f.(w7)/wT, g(wT) = g, (wT).

. To -
Attenuation Aapg = M,W 0 *flwr)
0
To  ,_
At = A,-———UTloo W wt)
0
Ty 35
A5"/1_110 = (éAe + Al) U%HO wt f(wt)
To 2-p
A(YU“ = ?\A‘ ULlH W<t f((UT)
3
. vz L100 -
Velocity Avpi0 = IiA,Uo 1 glwT)
vz
Avpio = ‘IAngwOf_“g(w‘f)
vz L1104~ 4
Avryp = '; (34, + A P14 g(wT)

vz
Avpye = ’; Ak g(wr)
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